A Public-Key Black-Box Traitor Tracing Scheme with Sublinear Ciphertext Size against Self-Defensive Pirates

T. Matsushita¹² and H. Imai² ¹TOSHIBA Corporation ²University of Tokyo

Copyright © 2004 Toshiba Corporation. All rights reserved.

Black-box tracing

- Traitors can be identified from the pirate decoder used as a black box
- The tracer chooses a set of suspects and inputs the header which can (or cannot) be decrypted by the selected suspects
- A scheme in which header size is linear in the total number of users is trivial

Assumptions on the pirate decoder

Assumption 1

- The pirate decoder can take measures that might escape from tracing if it detects tracing
- E.g., it will take self-defensive reactions:
 - erasing all of the internal keys and shutting down

Assumption 2

- The tracer can reset the pirate decoder to its initial state each time the tracer gives the input to it
 - We do not consider the pirate decoder that records the previous inputs

k: max. coalition size **Previous public-key schemes** (1/2)

[BF99], [Kurosawa-Yoshida02]

- Only black-box confirmation is supported, i.e., it is assumed that suspects can be narrowed down to k users in advance
- [Kiayias-Yung01]
 - The scheme supports black-box list-tracing in which the tracing algorithm outputs a suspect list
 - There is a trade-off between header size and detection probability
- Proposed scheme
 - The above assumption is unnecessary
 - The tracing algorithm can identify at least one traitor with overwhelming probability

Previous public-key schemes (2/2)

	Personal- key size	Header size	Type of tracing	Detection probability
[BF99],	O(1)	O(k)	Black-box	Overwhelm-
[Kurosawa- Yoshida02]			confirmation	ing
[Kiayias- Yung01]	O(1)	O(√n)	Black-box list-tracing	Trade-off with header size
Ours	O(1)	O(√ n)	Black-box	Overwhelm-
			tracing	ing

k: max. coalition size, n: total # of users

p,q: primes s.t. q|p-1, q
$$\ge$$
n+2k-1
g: q-th root of unity over Zp*
Proposed scheme (key generation)
• The method of [Mat02]: Split U into t disjoint subsets and
assign a distinct key-generation polynomial to each subset
 $U_0: f_0(x) = b_0 + a_1x + a_2x^2 + \dots + a_{2k-1}x^{2k-1} \mod q$
 $U_1: f_1(x) = a_0 + b_1x + a_2x^2 + \dots + a_{2k-1}x^{2k-1} \mod q$
 \vdots
 $U_i: f_i(x) = a_0 + a_1x + \dots + b_ix^i + \dots + a_{2k-1}x^{2k-1} \mod q$
 \vdots

Personal key for user i $(i, j, f_j(i))$ $(i \in U_j)$ Public key $(g, g^{a_0}, ..., g^{a_{2k-1}}, g^{b_0}, ..., g^{b_{t-1}})$ p,q: primes s.t. q|p-1, q \ge n+2k-1 g: q-th root of unity over Zp* s: session key R₀,R₁: random numbers **Proposed scheme (encryption)**

- Based on [Kurosawa-Yoshida02]
- Choose r_j from {R₀,R₁} and compute H_j for subgroup U_j

$$H_{j} = (h_{j}, h_{j,0}, h_{j,1}, \dots, h_{j,j}, \dots, h_{j,2k-1})$$

 $= (g^{r_j}, g^{a_0r_j}, g^{a_1r_j}, \dots, g^{b_jr_j}, \dots, g^{a_{2k-1}r_j})$ $= \text{Header: H}=\{H_0, \dots, H_{t-1}\} \quad \text{Element used only by the users in U}_i$

Bulk revocation

- All of the users in U_j can be revoked by substituting a random element for the element used only by them
- This helps to extend black-box confirmation in [Kurosawa-Yoshida02] to black-box tracing with sublinear header size

Header
$$g^{r_j}, g^{a_0r_j}, g^{a_1r_j}, \dots, g^{z_j}, \dots, g^{a_{2k-1}r_j}$$

Personal key
 $u, j, f_j(u)$
Sesence

Individual revocation

• Users in U_j can be revoked when $\sum_{i=0}^{2k-1} c_i u_{\alpha}^i \neq 0 \mod q$

Header

Proposed scheme (decryption)

 User u (u∈U_j) computes the session key s from H_j

$$H_{j} = (h_{j}, h_{j,0}, h_{j,1}, \dots, h_{j,j}, \dots, h_{j,2k-1})$$
$$S = \left(\frac{h_{j,0} \times h_{j,1}^{u} \times \dots \times h_{j,2k-1}^{u^{2k-1}}}{h_{j}^{f_{j}(u)}}\right)^{1/u^{j}}$$

k: max. coalition size, n: total # of users

Difference between [Kurosawa-Yoshida02] and ours

Difference between [Kiayias-Yung01] and ours

The probability that the tracer detects a traitor correctly is in inverse proportion to the size of the suspect list

Security

- Based on the difficulty of DDH problem
- Secrecy of the session key against eavesdroppers
- Black-box traceability
 - From the pirate decoder constructed by a coalition of at most k traitors, the tracing algorithm in our scheme can identify at least one of them with overwhelming probability
 - Indistinguishability of an input
 - Secrecy of a session key in an invalid input
 - Indistinguishability of a suspect

n: total # of users, t: # of subsets of users, k: max. coalition size, c: system parameter (0<c<1), ε : negligible probability, P,S,H: sets of possible personal keys/session keys/headers **Efficiency**

	Personal-key size (log P /log S)	Header size (log H /log S)	# of sets of suspects for testing	Detec- tion prob.	# of exp. for decryption
[Kurosawa- Yoshida02]*	1	2k+1	k	1- <i>ɛ</i>	O(k)
[Kiayias- Yung01]**	(1-c) ⁻¹	2(1-c) ⁻¹ n ^{1-c}	n ^{1-c}	n-c	O((1-c) ⁻¹)
Ours (t= n/2k)	1	4k+n/2k+2	n	1-ε	O(k)

*It is assumed that suspects can be narrowed down to k users in advance **ElGamal cryptosystem is straightforwardly applied

Efficiency - an example -

	Personal-key size (log P /log S)	Header size (log H /log S)	# of sets of suspects for testing	Detec- tion prob.	# of exp. for decryption
[Kiayias- Yung01] (c=1/2)	2	4 √n	√n	1/√n	O(1)
Ours (k=(n/8) ^{1/2})	1	2√2n+2	n	1- <i>ε</i>	O(√ n)

n: total # of users, k: max. coalition size, c: system parameter (0 < c < 1) ε : negligible prob., P,S,H: sets of possible personal keys/session keys/headers

Conclusions

- We have proposed a public-key black-box tracing scheme against self-defensive pirate decoders
 - Black-box tracing
 - Against self-defensive pirate decoders
 - With overwhelming detection probability
 - Sublinear ciphertext size
- Future research:
 - Reduction of computational cost for decryption
 - Further reduction of header size

References

- [BF99] D. Boneh and M. Franklin, "An Efficient Public Key Traitor Tracing Scheme," CRYPTO '99
- [KD98] K. Kurosawa and Y. Desmedt, "Optimum Traitor Tracing and Asymmetric Schemes," EUROCRYPT '98
- [Kiayias- A. Kiayias and M. Yung, "On Crafty Pirates and Foxy Tracers," SPDRM '01 Yung01]

[Kurosawa-Yoshida02] K. Kurosawa and T. Yoshida, "Linear Code Implies Public-Key Traitor Tracing," PKC '02

[Mat02] T. Matsushita, "A Flexibly Revocable Key-Distribution Scheme for Efficient Black-Box Tracing," ICICS '02